Compare Page

Information value

Characteristic Name: Information value
Dimension: Usability and Interpretability
Description: Quality information should provide a business value to the organization
Granularity: Information object
Implementation Type: Process-based approach
Characteristic Type: Usage

Verification Metric:

The number of tasks failed or under performed due to the lack of business value delivered by the information
The number of complaints received due to the lack of business value delivered by the information

GuidelinesExamplesDefinitons

The implementation guidelines are guidelines to follow in regard to the characteristic. The scenarios are examples of the implementation

Guidelines: Scenario:
Continuously asses the relevance and the usefulness of existing data to the organisational goals (Strategic level). (1)What is the cost of poor quality customer data to the organisation in concern?
(2) What revenue can be generated from data?
Continuously asses the usefulness of information based on the tasks at hand (Operational level) (1) Can we predict our future market share from the existing market information?
Monitor and Measure if the intended goal of the data presentation/Interpretation is achieved (1) Employee efficiency data is displayed in a dash board to motivate employees. The effectiveness of this display can be measured by examining the efficiency gain of each employee.
(2) Has the given sales forecast for the last three years been reasonably accurate compared to actuals.

Validation Metric:

How mature is the process to maintain the business value of information

These are examples of how the characteristic might occur in a database.

Example: Source:
Consider a database containing orders from customers. A practice for handling complaints and returns is to create an “adjustment” order for backing out the original order and then writing a new order for the corrected information if applicable. This procedure assigns new order numbers to the adjustment and replacement orders. For the accounting department, this is a high-quality database. All of the numbers come out in the wash. For a business analyst trying to determine trends in growth of orders by region, this is a poor-quality database. If the business analyst assumes that each order number represents a distinct order, his analysis will be all wrong. Someone needs to explain the practice and the methods necessary to unravel the data to get to the real numbers (if that is even possible after the fact). J. E. Olson, “Data Quality: The Accuracy Dimension”, Morgan Kaufmann Publishers, 9 January 2003.

The Definitions are examples of the characteristic that appear in the sources provided.

Definition: Source:
1) A measure of the degree to which data will produce the desired business transaction or outcome.

2) A measure of the perception of and confidence in the quality of the data; the importance, value, and relevance of the data to business needs.

D. McGilvray, “Executing Data Quality Projects: Ten Steps to Quality Data and Trusted Information”, Morgan Kaufmann Publishers, 2008.
As a data quality-oriented organization matures, the agreement of usage will move from a small set of “early adopters” to gradually encompass more and more of the enterprise, Ubiquity measures the degree to which different departments in an organization use shared reference data. LOSHIN, D. 2001. Enterprise knowledge management: The data quality approach, Morgan Kaufmann Pub.
Data are beneficial and provide advantages for their use. WANG, R. Y. & STRONG, D. M. 1996. Beyond accuracy: What data quality means to data consumers. Journal of management information systems, 5-33.

 

Accuracy to reality

Characteristic Name: Accuracy to reality
Dimension: Accuracy
Description: Data should truly reflect the real world
Granularity: Record
Implementation Type: Process-based approach
Characteristic Type: Usage

Verification Metric:

The number of tasks failed or under performed due to lack of accuracy to reality
The number of complaints received due to lack of accuracy to reality

GuidelinesExamplesDefinitons

The implementation guidelines are guidelines to follow in regard to the characteristic. The scenarios are examples of the implementation

Guidelines: Scenario:
Continuously evaluate if the existing data model is sufficient to represent the real world as required by the organisational need and do the necessary amendments to the data model if needed. (1) A student who received a concession travel card is not eligible for a concession fare if he terminates his candidature before completion of the course. Hence the data model should have an extra attribute as "current status of candidature"
Perform regular audits on mission critical data to verify that every record has a meaningful existence in the reality which is useful for the organisation (1) All customers existing in the customer master file actually a customer in the customer space open for the organisation. (non customers are not in the customer file) (2) "Greg Glass" is recorded as a glass work company but in fact they are opticians
(3) A person's personal details taken from his educational profile may not be a correct reality for his insurance profile even though the information is
Perform regular audits on mission critical data to verify that every record has a unique existence in the reality (1) It is difficult to find out that the professor "Andrew" is from Colombia university or from the university of Queensland
Ensure that Information available in the system is accurate in the context of a particular activity or event (1) The driver details taken from vehicle registration may not be accurate in the case of finding the real person who drive the vehicle when an accident is caused

Validation Metric:

How mature is the process to ensure the accuracy to reality

These are examples of how the characteristic might occur in a database.

Example: Source:
if the name of a person is John, the value v = John is correct, while the value v = Jhn is incorrect C. Batini and M, Scannapieco, “Data Quality: Concepts, Methodologies, and Techniques”, Springer, 2006.
Percent of values that are correct when compared to the actual value. For example, M=Male when the subject is Male. P. Cykana, A. Paul, and M. Stern, “DoD Guidelines on Data Quality Management” in MIT Conference on Information Quality - IQ, 1996, pp. 154-171.
an EMPLOYEE entity (identified by the Employee-Number

314159) and the attribute Year-of-Birth. If the value of Year-of-Birth for employee 314159 is the year the employee was born, the datum is correct.

C. Fox, A. Levitin, and T. Redman, “The Notion of Data and Its Quality Dimensions” in Journal Information Processing and Management: an International Journal archive, Volume 30 Issue 1, Jan-Feb 1994, 1992, pp. 9-19.
Consider a database that contains names, addresses, phone numbers, and e- mail addresses of physicians in the state of Texas. This database is known to have a number of errors: some records are wrong, some are missing, and some are obsolete. If you compare the database to the true population of physicians, it is expected to be 85% accurate. If this database is to be used for the state of Texas to notify physicians of a new law regarding assisted suicide, it would certainly be considered poor quality. In fact, it would be dangerous to use it for that intended purpose.

24

2.1 Data Quality Definitions 25

If this database were to be used by a new surgical device manufacturer to find potential customers, it would be considered high quality. Any such firm would be delighted to have a potential customer database that is 85% accurate. From it, they could conduct a telemarketing campaign to identify real sales leads with a completely acceptable success rate. The same database: for one use it has poor data quality, and for another it has high data quality.

J. E. Olson, “Data Quality: The Accuracy Dimension”, Morgan Kaufmann Publishers, 9 January 2003.
The patient’s identification details are correct and uniquely identify the patient. P. J. Watson, “Improving Data Quality: A Guide for Developing Countries”, World Health Organization, 2003.

The Definitions are examples of the characteristic that appear in the sources provided.

Definition: Source:
Determines the extent to which data objects correctly represent the real-world values for which they were designed. For example, the sales orders for the Northeast region must be assigned a Northeast sales representative. D. McGilvray, “Executing Data Quality Projects: Ten Steps to Quality Data and Trusted Information”, Morgan Kaufmann Publishers, 2008.
The data value correctly reflects the real-world condition. B. BYRNE, J. K., D. MCCARTY, G. SAUTER, H. SMITH, P WORCESTER 2008. The information perspective of SOA design Part 6:The value of applying the data quality analysis pattern in SOA. IBM corporation.
The data correctly reflects the Characteristics of a Real-World Object or Event being described. Accuracy and Precision represent the highest degree of inherent Information Quality possible. ENGLISH, L. P. 2009. Information quality applied: Best practices for improving business information, processes and systems, Wiley Publishing.
Is the information precise enough and close enough to reality? EPPLER, M. J. 2006. Managing information quality: increasing the value of information in knowledge-intensive products and processes, Springer.
1) Each identifiable data unit maps to the correct real-world phenomenon.

2) Non-identifying (i.e. non-key) attribute values in an identifiable data unit match the property values for the represented real-world phenomenon.

3) Each identifiable data unit represents at least one specific real-world phenomenon.

4) Each identifiable data unit represents at most one specific real-world phenomenon.

PRICE, R. J. & SHANKS, G. Empirical refinement of a semiotic information quality framework. System Sciences, 2005. HICSS'05. Proceedings of the 38th Annual Hawaii International Conference on, 2005. IEEE, 216a-216a.
1) The degree to which an information object correctly represents another information object, process, or phenomenon in the context of a particular activity or culture.

2) Closeness of agreement between a property value and the true value (value that characterizes a characteristic perfectly defined in the conditions that exists when the characteristic is considered.

3) The extent to which the correctness of information is verifiable or provable in the context of a particular activity.

STVILIA, B., GASSER, L., TWIDALE, M. B. & SMITH, L. C. 2007. A framework for information quality assessment. Journal of the American Society for Information Science and Technology, 58, 1720-1733.